
Improving CSE Software through Reproducibility
Requirements

Michael A. Heroux
∗

Sandia National Laboratories
Albuquerque, NM

maherou@sandia.gov

ABSTRACT
It is often observed that software engineering (SE) processes
and practices for computational science and engineering (CSE)
lag behind other SE areas [7]. This issue has been a concern
for funding agencies, since new research increasingly relies
upon and produces computational tools. At the same time,
CSE research organizations find it difficult to prescribe for-
mal SE practices for funded projects.

Theoretical and experimental science rely heavily on in-
dependent verification of results as part of the scientific pro-
cess. Computational science should have the same regard
for independent verification but it does not.

In this paper, we present an argument for using repro-
ducibility and independent verification requirements as a
driver to improve SE processes and practices. We describe
existing efforts that support our argument, how these re-
quirements can impact SE, challenges we face, and new op-
portunities for using reproducibility requirements as a driver
for higher quality CSE software.

Categories and Subject Descriptors
D.2.9 [Software]: Software EngineeringManagement[Software
quality assurance]

General Terms
Reproducibility,Verification,Software Engineering

Keywords
Computational Science and Engineering, Scientific Process,
Software Engineering

∗Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of EnergyÕs National Nuclear Security
Administration under contract DE-AC04-94AL85000.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SE-CSE ’11, May 28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0598-3/11/05 ...$10.00.

1. INTRODUCTION
Computational Science and Engineering (CSE) is often

called the third paradigm of scientific discovery. It is truly a
scientific endeavor attempting to add to the global collection
of human knowledge. At the same time, as is often observed,
CSE software engineering practices lag behind other areas.
In particular, research-oriented software is often discarded
after the project that produced it is complete. This issue has
been a concern for funding agencies such as the US National
Science Foundation (NSF) (see the Software Infrastructure
for Sustained Innovation–SI2 for the NSF effort to address
this issue [16]), since NSF and similar agencies find that
new research increasingly relies upon and produces compu-
tational tools. NSF-funded research can typically produce
very good results, but often the software generated as part
of the project has been developed only to produce research
results, after which the software is set aside, perhaps to be
used later, but certainly not available to external people and
often not under version control.

CSE research organizations find it difficult to prescribe
formal software engineering practices for funded projects be-
cause there is not a lot of specific literature on SE for CSE
research software, and because researchers would find such
prescriptions artificial and a hindrance to progress on their
research.

Theoretical and experimental science rely heavily on in-
dependent confirmation of results as part of the scientific
process. In principle, computational science should have the
same regard for independent confirmation, but a study of the
literature shows that in many cases there is very little hope
of reproducing published results from the published informa-
tion. Furthermore, results are often generated by software
that is not managed, and it would be difficult in the future
to identify the exact version of software that generated the
results.

In this paper we discuss how requiring independent con-
firmation of CSE results can impact the quality of research
software. Furthermore, we observe that, although funding
agencies may find it difficult to impose formal software en-
gineering practices on funded project, it is very reasonable
to expect research teams to obtain independent verification
of their results. In fact, it is our opinion that if indepen-
dent verification is expected, we will see rapid adoption and
adaptation of software engineering practices in the research
community, not because formal process were imposed but
because researchers will want to minimize the overall effort
that goes into achieving independent verification. Good soft-
ware engineering is a part of the process.

2. REPRODUCIBILITY AND SE
If a research team is told it must be able to readily repro-

duce computational results and support independent results
verification, several things become immediately useful:

1. Source management tools: In order to guarantee that
results can be reproduced, the software must be pre-
served so that the exact version used to produce results
is available at a later date.

2. Use of other standard tools and platforms: In order
to reduce the complexity of an environment, standard
software libraries and computing environments will be
helpful.

3. Documentation: Independent verification requires that
someone else understand how to use your software.

4. Source code standards: Improves the ability of others
to read your source code.

5. Testing: Investment in greater testing makes sense be-
cause the software will be used by others.

6. High-quality software engineering environment: If a
research team is serious about producing high-quality,
reproducible and verifiable results, it will want to in-
vest in a high-quality SE environment to improve team
efficiency.

Requiring reproducibility and independent verification does
have many positive influences on SE practices and processes.
In fact, we believe that reproducibility and verification re-
quirements are the most natural way help CSE teams make
progress against SE goals.

3. EXISTING EFFORTS
There are many ways to make progress on software quality

and independent verification. In this section we discuss sev-
eral efforts that have made an impact on research software.
This is not an exhaustive list, but is meant to illustrate the
variety of ways we can attack this problem.

3.1 ASCI SQA Requirements
In the late 1990s, the US Department of Energy estab-

lished the Accelerated Strategic Computing Initiative (ASCI,
now ASC) [8]. A major component of the program was the
establishment of software quality assurance (SQA) policies
and a software quality engineering (SQE) team. Any soft-
ware research effort funded by the program was expected to
adhere to the SQA policies and show how it was performing
SQE. Assessments and audits were performed regularly. The
presence of SQA/SQE in ASCI had a profound impact on
software planning and team organization. One of the biggest
impacts was the creation of the Trilinos Project [13, 14] at
Sandia National Laboratories. Although mathematical re-
search software had been developed at Sandia for many years
by small teams, each with its own custom software stack and
informal processes, the rigors of SQA/SQE in ASCI made it
infeasible for small teams to satisfy requirements indepen-
dently. Trilinos was started in part to provide SQA/SQE
support for small teams. Once started, the Trilinos Project
continued its focus on SQA/SQE issues, above and beyond
what ASCI required, primarily because Trilinos development
teams saw the value of improved software process and tools

and the cost of improvement was leveraged across the many
teams that make up the project. Presently Trilinos supports
nearly 60 small team package development efforts, provid-
ing high quality software processes and tools that allow the
large collection of independently developed, inter-dependent
software packages to work in concert.

3.2 The ACM Transactions on Mathematical
Software (ACM/TOMS)

The ACM/TOMS journal [3] is a forum for disseminating
progress in the design and implementation of mathematical
software. TOMS has a strong emphasis on making sure that
the software discussed in a paper exists in a tangible way.
Although no formal policy explicitly lists exactly what is
acceptable, TOMS is a high-impact journal because many of
the articles present software that eventually becomes heavily
used by the research community.

Other journals regularly publish computational results,
and some have a similar concrete relationship to released
software, but in our experience many computational jour-
nals do not have any concrete process to confirm that the
software used to generate result is working properly, or avail-
able to others, much less that the results are accurate.

3.3 Executable Paper Grand Challenge
Elsevier recently announced its Executable Paper Grand

Challenge [11]. This contest was created to make the pub-
lication of computational science results higher quality and
easier. The specific questions the challenge asked were:

• How can we develop a model for executable files that
is compatible with the user’s operating system and ar-
chitecture and adaptable to future systems?

• How do we manage very large file sizes?

• How do we validate data and code, and decrease the
reviewer’s workload?

• How to support registering and tracking of actions
taken on the ‘executable paper?’

The contest organizers recognize that the data, software and
other elements that go into producing a computational sci-
ence paper are often lost, since only the paper is typically
archived.

4. CHALLENGES
Although any independent verification effort of scientific

results is challenging, it seems to us that verifying compu-
tational results is particularly hard for several reasons, and
will require years of effort, changes in publishing processes
and deep cultural changes.

4.1 Complexity of Computing Environment
One of the most daunting challenges for reproducing re-

sults is the complexity of our computing environments. Al-
though reproducing the numerical values generated by a
code may be relatively straight-forward, assuming access to
the original software environment, many CSE papers also
include timing results. Timing can be impacted by any level
of the computing platform: Processor choice, operating sys-
tem, runtime libraries and compiler flags. Reproducing the
exact configuration is very challenging, especially after the
initial results are produced, even if done by the same user.

4.2 Cost
Independent verification is costly. It requires investment

in infrastructure by the research team and the independent
verifier. It can also put a lot of demand on the verifier, es-
pecially if the reference computing system environment is
not easily available. Presently journal referees are not ex-
pected, nor have the facilities, to assess the quality of com-
putational results beyond examining the given manuscript.
External verification is possible, by looking for presence of
the software on the Internet, but this is an ad hoc approach
that, even if it does not find the software, does not typically
disqualify the paper.

Another cost is the likely increase in time to produce a
manuscript for submission to a journal, as well as the time
between submission and publication. However, we expect
that the quality of an article will improve if reproducibility
and independent verification is required, and the results of
published articles can be more highly trusted.

4.3 Cultural
Perhaps the most difficult challenge we face in making

progress toward reproducible results and independent verifi-
cation is cultural. Most computational scientists do not have
the habit or desire to share their computing environment
with verifiers. This reluctance can be overcome, probably
most effectively by funding agencies including independent
verification as a requirement for funding.

5. USEFUL ACTIVITIES
As mentioned in Section 3, there are existing efforts whose

success move us in the direction of reproducible results and
independent verification. However, there are more activities
that can be emphasized. Some of them are emerging only
now and provide us with new opportunities.

5.1 Standardized Platforms
A very helpful tool toward our goals would be a standard,

widely available computing platform. Since many computer
systems are based on commodity parts, operating systems
and compiling environments, it has been possible for some
time to have independent verification platforms. However,
there are so many possible combinations that practically
speaking it is very hard to expect an independent verifier
to be able to confirm results on a separate system.

Recently “cloud” computing has become a real commer-
cial service. As one example, Amazon’s Electronic Cloud
Computing (EC2) service [1] provides a high-performance
computing platform that is available to anyone on the Inter-
net, even providing a base number of free computing hours.
This service can provide a legitimate approach to indepen-
dent verification, by having standard platforms available,
even established by particular journals. The popular pack-
age Clawpack uses a similar approach, providing a complete
installation of Clawpack and all required software in a self-
contained virtual machine [17]. Perhaps, just like each jour-
nal has its own LATEX format templates, each computational
journal can have its own cloud computing or virtual machine
platform, and porting to that platform is one way to provide
access to an independent verifier.

This approach will certainly not address all needs. For
example, some computational results are of interest because
they are generated on the latest and best computing plat-
forms. In those situations, it is perhaps possible to allow the

reviewer to obtain access to the same system and to directly
access the research team’s software environment.

5.2 Use Standard Libraries
In addition to a common platform, use of standard li-

braries, perhaps also part of the journal cloud platform,
could reduce variability in results. Specifically, the platform
could include a suite of common libraries such as BLAS [15,
9, 10], LAPACK [2], FFTW [12], PETSc [6, 5, 4] and Trili-
nos. This approach would also encourage use of standard
libraries in general, which is generally positive. We know of
one such instance already: StarHPC [18]. This EC2 comput-
ing cluster provides both OpenMP and OpenMPI parallel
computing environment.

5.3 Journal Policies
A key to making progress on reproducible results and in-

dependent verification has to be journal policies, if only to
have the computational science journals include some form
of interrogation about the availability and usability of the
software used by a paper. Ideally, we would like journals to
require independent verification of results prior to publica-
tion, as is done in other areas of science. Even though such
rigor is not possible today, we can at least modify journal
policies to make progress in this direction.

5.4 Funding Agencies
The final key to progress is to engage funding agencies and

encourage them to expect funded research teams to produce
results that are reproducible and independently verifiable. If
CSE research teams get funding only by agreeing to repro-
ducibility requirements, in a similar way to the ASCI pro-
gram mentioned in Section 3, we believe that the cultural
and infrastructure requirements will be naturally addressed
by teams without imposing any specific formal SQA/SQE
requirements.

6. CONCLUSIONS
CSE has often been described as the third fundamental

paradigm for scientific advance, and it is truly recognized
as a valuable pursuit, even being mentioned in the past
two State of the Union addresses by US president Barack
Obama. However, as a scientific process, the lack of re-
producibility and independent verification is noticeable, as
is the lack of software engineering rigor. We believe that
these two weaknesses are linked, and that demanding re-
producibility of computational results will positively impact
adoption and innovative adaptation of software engineering
practices and processes in CSE. We have already seen this
impact in some projects, such as the DOE ASCI program.
The availability of cloud computing and a broad collection
of standard libraries, and the awareness of journal editors
and funding agencies make it a good time to raise awareness
of reproducibility as a positive mechanism for improving the
quality and impact of computational science.

7. REFERENCES
[1] Amazon.com. Amazon Elastic Compute Cloud

(Amazon EC2), 2011. http://aws.amazon.com/ec2.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel,
J. Dongarra, J. D. Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and

D. Sorensen. LAPACK Users’ Guide. SIAM Pub.,
Philadelphia, PA, second edition, 1995.

[3] Association for Computing Machinery. Transactions
on mathematical software, 2011.
http://toms.acm.org.

[4] S. Balay, W. Gropp, L. McInnes, and B. Smith.
Efficient management of parallelism in object oriented
numerical software libraries. In E. Arge, A. M.
Bruaset, and H. P. Langtangen, editors, Modern
Software Tools in Scientific Computing, pages
163–202. Birkhauser Press, 1997.

[5] S. Balay, W. Gropp, L. McInnes, and B. Smith.
PETSc 2.0 users manual. Technical Report ANL-95/11
- Revision 2.0.22, Argonne National Laboratory, 1998.

[6] S. Balay, W. Gropp, L. McInnes, and B. Smith.
PETSc home page. http://www.mcs.anl.gov/petsc,
1998.

[7] J. Carver. Fourth international workshop on software
engineering for computational science and
engineering., 2011.
http://www.cs.ua.edu/%7ESECSE11/.

[8] Department of Energy. Advanced simulation and
computing, 2011. http://www.sandia.gov/nnsa/asc.

[9] J. Dongarra, J. DuCroz, S. Hammarling, and
R. Hanson. An extended set of Fortran basic linear
algebra subprograms. ACM Transactions on
Mathematical Software, 14, 1988.

[10] J. J. Dongarra, J. Du Croz, S. Hammarling, and
I. Duff. A set of level 3 basic linear algebra
subprograms. ACM Transactions on Mathematical
Software, 16(1):1–17, March 1990.

[11] Elsevier. Executable paper grand challenge., 2011.
http://www.executablepapers.com/.

[12] M. Frigo and S. G. Johnson. Fftw 3.2.2., 2011.
http://www.fftw.org/fftw3_doc.

[13] M. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu,
T. Kolda, R. Lehoucq, K. Long, R. Pawlowski,
E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro,
J. Willenbring, and A. Williams. An Overview of
Trilinos. Technical Report SAND2003-2927, Sandia
National Laboratories, 2003.

[14] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J.
Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R.
Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger,
H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley. An overview of the
trilinos project. ACM Trans. Math. Softw.,
31(3):397–423, 2005.

[15] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh.
Basic linear algebra subprograms for Fortran usage.
ACM Transactions on Mathematical Software, 5, 1979.

[16] National Science Foundation. Software infrastructure
for sustained innovation, 2011.
http://www.nsf.gov/funding/pgm_summ.jsp?pims_

id=503489&org=NSF&sel_org=XCUT&from=fund.

[17] Randall LeVeque. Clawpack Virtual Machine, 2011.
http://kingkong.amath.washington.edu/clawpack/

doc/vm.html.

[18] Star Program. Star: Hpc - Home, 2011.
http://web.mit.edu/star/hpc.

